Математика. Подготовка к ЕГЭ. Решение задач.
http://alexlarin.com/

МГУ ДВИ 2018
http://alexlarin.com/viewtopic.php?f=4&t=16106
Страница 6 из 12

Автор:  Kirill Kolokolcev [ 04 июл 2018, 23:26 ]
Заголовок сообщения:  Re: МГУ ДВИ 2018

vyv2 писал(а):
Kirill Kolokolcev писал(а):
5. `(150\sqrt{6})/(49)`



У меня в 5. `(216\sqrt{6})/(49)`

Юрий Владимирович, у меня высота треугольника (она же радиус полуокружности) равна `(12sqrt(6))/7`, а основание `AM` треугольника `AMO` равно `25/7`

Автор:  Ischo_Tatiana [ 04 июл 2018, 23:27 ]
Заголовок сообщения:  Re: МГУ ДВИ 2018

vyv2 писал(а):
Kirill Kolokolcev писал(а):
5. `(150\sqrt{6})/(49)`



У меня в 5. `(216\sqrt{6})/(49)`

Подробности:
Треугольник `AMO` подобен `CON ` с коэффициентом `k=5/7`.
По Герону `S(CON)=6\sqrt6`
`S(AMO)=(25)/(49)*6sqrt6`

Автор:  vyv2 [ 04 июл 2018, 23:54 ]
Заголовок сообщения:  Re: МГУ ДВИ 2018

Ischo_Tatiana писал(а):
vyv2 писал(а):
Kirill Kolokolcev писал(а):
5. `(150\sqrt{6})/(49)`



У меня в 5. `(216\sqrt{6})/(49)`

Подробности:
Треугольник `AMO` подобен `CON ` с коэффициентом `k=5/7`.
По Герону `S(CON)=6\sqrt6`
`S(AMO)=(25)/(49)*6sqrt6`


Я нашел площадь треугольника NMO, а надо было АМО. Невнимательность прогрессирует.

Автор:  OlG [ 05 июл 2018, 01:03 ]
Заголовок сообщения:  Re: МГУ ДВИ 2018

Kirill Kolokolcev писал(а):
Почему-то этот вариант куда сложнее предыдущих..
Пока что так..
Подробности:
1. `log_2 3+log_3 4>(sqrt(15)+sqrt(17))/(2sqrt(2))`
2. `2`
3. `\pm\pi/7+2\pi n, \pm(3\pi)/7+2\pi n, \pm(5\pi)/7+2\pi n, \pm(2\pi)/5+2\pi n, \pm(4\pi)/5+2\pi n,` где `n\in\mathbb{Z}`
4. `\emptyset`
5. `(150\sqrt{6})/(49)`
6. `18:00`
7. `sqrt(13/(6sqrt(6)))`
8. `(\pi n; \pi k), (-(3\pi)/4+2\pi k; -(5\pi)/6+2\pi n), (-\pi/4+2\pi k; -\pi/6+2\pi n), ((3\pi)/4+2\pi k; (5\pi)/6+2\pi n), (\pi/4+2\pi k; \pi/6+2\pi n),` где `n, k\in\mathbb{Z}`

17. Ваши ответы - верные. Ответ задания №7 лучше записать так: `(root(4)(1014))/6`.

18. Вариант - обычный. №4 не встречал раньше, но решается несложно.
Ухудшение погоды возможно на Вас повлияло.

Автор:  nina216 [ 06 июл 2018, 06:24 ]
Заголовок сообщения:  Re: МГУ ДВИ 2018

Kirill Kolokolcev писал(а):
OlG писал(а):
16. Опять вариант:
Подробности:
Вложение:
Вариант ф91.pdf

Почему-то этот вариант куда сложнее предыдущих..
Пока что так..
1. `log_2 3+log_3 4>(sqrt(15)+sqrt(17))/(2sqrt(2))`
2. `2`
3. `\pm\pi/7+2\pi n, \pm(3\pi)/7+2\pi n, \pm(5\pi)/7+2\pi n, \pm(2\pi)/5+2\pi n, \pm(4\pi)/5+2\pi n,` где `n\in\mathbb{Z}`
4. `\emptyset`
5. `(150\sqrt{6})/(49)`
6. `18:00`
7. `sqrt(13/(6sqrt(6)))`
8. `(\pi n; \pi k), (-(3\pi)/4+2\pi k; -(5\pi)/6+2\pi n), (-\pi/4+2\pi k; -\pi/6+2\pi n), ((3\pi)/4+2\pi k; (5\pi)/6+2\pi n), (\pi/4+2\pi k; \pi/6+2\pi n),` где `n, k\in\mathbb{Z}`


Уважаемый Кирилл, расскажите, пожалуйста, как Вы решали задачу № 3. Мой ответ совпал с Вашим, но само решение получилось довольно сложным. (сначала я преобразовала произведение `cos(x)cos(2x)` в сумму, затем домножила обе части уравнения на `sin(x)`, далее еще раз воспользовалась формулами преобразования произведения тригонометрических функций в сумму. В результате преобразований получилось уравнение-следствие `sin(6x)-sin(x)=0`, посторонние решения отсеяла с помощью круга.

Автор:  antonov_m_n [ 06 июл 2018, 08:05 ]
Заголовок сообщения:  Re: МГУ ДВИ 2018

Если сразу домножить обе части уравнения на `sinx`(`x!=pik`), то :
`sin4x+2sinx*cos5x=sinx <=>sin4x-sin4x+sin6x=sinx`

Автор:  nina216 [ 06 июл 2018, 11:23 ]
Заголовок сообщения:  Re: МГУ ДВИ 2018

antonov_m_n писал(а):
Если сразу домножить обе части уравнения на `sinx`(`x!=pik`), то :
`sin4x+2sinx*cos5x=sinx <=>sin4x-sin4x+sin6x=sinx`


Спасибо!

Автор:  Galina Why [ 12 июл 2018, 00:30 ]
Заголовок сообщения:  Re: МГУ ДВИ 2018

Здравствуйте форумчане. Не могли бы вы мне дать подсказку для начала решения логарифметического неравенства из №6 Варианта Ф-41. У меня уже нет к сожалению никаких идей.

Автор:  OlG [ 12 июл 2018, 00:50 ]
Заголовок сообщения:  Re: МГУ ДВИ 2018

Подробности:
Galina Why писал(а):
Здравствуйте форумчане. Не могли бы вы мне дать подсказку для начала решения логарифметического неравенства из №6 Варианта Ф-41. У меня уже нет к сожалению никаких идей.

19.

а) `t=x^2-x/2.`

б) `f(t)=1/2log_(2)(t+1)+ 3log_(3)t quad uparrow.`

в) `f(3)=4.`

г) `log_(2) sqrt(x^2-x/2+1)+ 3log_(3)(x^2-x/2) le 4 quad iff quad {(x^2-x/2 le 3),(x^2-x/2 gt 0):} quad .`

20. Дальше Сами.

Автор:  Galina Why [ 12 июл 2018, 01:09 ]
Заголовок сообщения:  Re: МГУ ДВИ 2018

OLG, большое спасибо за оперативный ответ. Вы мне вернули хороший сон. :obscene-drinkingcheers:

Страница 6 из 12 Часовой пояс: UTC + 3 часа
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
http://www.phpbb.com/