Регистрация    Вход    Форум    Поиск    FAQ   alexlarin.net

Список форумов » Интересные задачки




 Страница 1 из 1 [ Сообщений: 9 ] 



Автор Сообщение
 Заголовок сообщения: Олимпиадная задачка на делимости
 Сообщение Добавлено: 03 дек 2018, 14:28 
Не в сети

Зарегистрирован: 07 мар 2018, 16:37
Сообщений: 7
Верно ли, что любое делящееся на 6 число, больше 1000, можно представить в виде
n(n+1)(n+2)(n+3)(n+4) - m(m+1)(m+2), где n и m натуральные?

Очевидно каждое из слагаемых делится на 6. Дальше не поддаётся (


Вернуться наверх 
 Заголовок сообщения: Re: Олимпиадная задачка на делимости
 Сообщение Добавлено: 03 дек 2018, 20:46 
Не в сети

Зарегистрирован: 16 фев 2011, 14:13
Сообщений: 1714
Иван4321 писал(а):
Верно ли, что любое делящееся на 6 число, больше 1000, можно представить в виде
n(n+1)(n+2)(n+3)(n+4) - m(m+1)(m+2), где n и m натуральные?

Очевидно каждое из слагаемых делится на 6. Дальше не поддаётся (


Ответ:
Подробности:
очевидно, что неверно


Указание:
Подробности:
посмотрите на остатки от деления на 5


Ну и:
Подробности:
ничего олимпиадного тут нет. Без обид.


Вернуться наверх 
 Заголовок сообщения: Re: Олимпиадная задачка на делимости
 Сообщение Добавлено: 03 дек 2018, 23:29 
Не в сети

Зарегистрирован: 07 мар 2018, 16:37
Сообщений: 7
alex123, спасибо за ответ. Вы меня удивили. Но ведь среди трёх подряд идущих натуральных чисел обязательно есть делящееся на три и хотя бы одно чётное. Значит их произведение делится на 6. Ну и уж тем более это верно для 5 подряд идущих.

Буду думать.


Вернуться наверх 
 Заголовок сообщения: Re: Олимпиадная задачка на делимости
 Сообщение Добавлено: 04 дек 2018, 00:05 
Не в сети

Зарегистрирован: 16 фев 2011, 14:13
Сообщений: 1714
Иван4321 писал(а):
alex123, спасибо за ответ. Вы меня удивили. Но ведь среди трёх подряд идущих натуральных чисел обязательно есть делящееся на три и хотя бы одно чётное. Значит их произведение делится на 6. Ну и уж тем более это верно для 5 подряд идущих.

Буду думать.


Про делимость:
Подробности:
С делимостью на 6 никаких проблем нет. А с делимостью на 5 - есть.

Поэтому 1002 или 1008 уже выразить не получится. Как и любое другое число, дающее остатки 12 или 18 при делении на 30.


Но там и без делимости проблем хватает. Связанных со скоростью роста степенной функции.


Вернуться наверх 
 Заголовок сообщения: Re: Олимпиадная задачка на делимости
 Сообщение Добавлено: 06 дек 2018, 10:05 
Не в сети

Зарегистрирован: 14 фев 2012, 19:11
Сообщений: 401
alex123 писал(а):
Но там и без делимости проблем хватает. Связанных со скоростью роста степенной функции.

Ну, там степенные функции от разных аргументов, так что на скорости роста проблему не сделаешь. (Если Вы не имели в виду что-то другое.) Остаются только запрещенные остатки при делении на волшебные модули (кратные 5 в данном случае). Маловероятно, что есть какой-то иной способ решения.


Вернуться наверх 
 Заголовок сообщения: Re: Олимпиадная задачка на делимости
 Сообщение Добавлено: 06 дек 2018, 13:49 
Не в сети

Зарегистрирован: 16 фев 2011, 14:13
Сообщений: 1714
nnosipov писал(а):
alex123 писал(а):
Но там и без делимости проблем хватает. Связанных со скоростью роста степенной функции.

Ну, там степенные функции от разных аргументов, так что на скорости роста проблему не сделаешь. (Если Вы не имели в виду что-то другое.) Остаются только запрещенные остатки при делении на волшебные модули (кратные 5 в данном случае). Маловероятно, что есть какой-то иной способ решения.


Но этих функций всего две. Даже в треугольных числах нужно три, чтобы представить все.

Так что можно, другое дело, что это намного более трудоемко, чем остатки. Так что замечание не про оптимальное решение, а про то, что и в разрешенных остатках тоже мало что представляется.


Вернуться наверх 
 Заголовок сообщения: Re: Олимпиадная задачка на делимости
 Сообщение Добавлено: 06 дек 2018, 15:35 
Не в сети

Зарегистрирован: 14 фев 2012, 19:11
Сообщений: 401
alex123 писал(а):
Так что можно, другое дело, что это намного более трудоемко, чем остатки.

Если бы там была сумма двух (положительных) функций, я бы понял эти аргументы про плотность. Но мы имеем здесь разность, и они не работают. (Почему маленькая разность невозможна при больших числах? Это просто не объяснишь. Или Вы имели в виду привлечение мощной артиллерии типа оценок линейных форм с логарифмами?) Вот возьмем, например, разность 6 с разрешенным остатком. Как доказать, что она невозможна (что, скорее всего, верно)?

Вспоминается в этой связи классическая задача о возможных значениях разности между точным квадратом и точным кубом. Там ведь без оценок линейных форм с логарифмами не обошлось. Но для школьных задач это запредельные аргументы.


Вернуться наверх 
 Заголовок сообщения: Re: Олимпиадная задачка на делимости
 Сообщение Добавлено: 06 дек 2018, 17:45 
Не в сети

Зарегистрирован: 16 фев 2011, 14:13
Сообщений: 1714
nnosipov писал(а):
Там ведь без оценок линейных форм с логарифмами не обошлось. Но для школьных задач это запредельные аргументы.


И тут, скорее всего, не обойдется. И да, не школьная это тема.

Просто мне, вам и еще 100500 товарищам очевидно, что это так. Среди этих 100500 вполне могут быть и школьники, а требовать с них доказательство да, негуманно. Но его никто и не требует :)

Школьник топик-стартер, по всей видимости, был уверен, что этой формой представимы все кратные. И был удивлен, что это не так. Я попробовал направить его интуицию в нужное русло, показав, что есть куча причин, почему это не так. Получилось или нет - понятия не имею.

Не знаю, как кому, а мне, если просят доказать в формулировке "верно или нет", проще сначала правдоподобными соображениями "понять", верно или нет, а потом уже доказывать конкретное утверждение. Даже если в итоге окажется, что "правдоподобные соображения" были неверны, это, обычно, не усугубляет ситуации.


Вернуться наверх 
 Заголовок сообщения: Re: Олимпиадная задачка на делимости
 Сообщение Добавлено: 06 дек 2018, 18:36 
Не в сети

Зарегистрирован: 14 фев 2012, 19:11
Сообщений: 401
alex123 писал(а):
Не знаю, как кому, а мне, если просят доказать в формулировке "верно или нет", проще сначала правдоподобными соображениями "понять", верно или нет, а потом уже доказывать конкретное утверждение.

Да, это естественно. А школьник, похоже, действительно думал, что все кратное 6 представимо. Интуиции пока маловато.


Вернуться наверх 
Показать сообщения за:  Сортировать по:  
 
 Страница 1 из 1 [ Сообщений: 9 ] 





Кто сейчас на форуме

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 1

 
 

 
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти: