Регистрация    Вход    Форум    Поиск    FAQ   alexlarin.net



 Страница 3 из 16 [ Сообщений: 155 ] На страницу Пред.  1, 2, 3, 4, 5, 6 ... 16  След.



Автор Сообщение
 Заголовок сообщения: Re: Тренировочный вариант №207
 Сообщение Добавлено: 14 окт 2017, 10:12 
Не в сети
Аватар пользователя

Зарегистрирован: 08 окт 2015, 18:28
Сообщений: 51
netka писал(а):
Crane писал(а):
В 13:
Подробности:
а) ` pik; pi/6 + pik; pi/3 + pik`
б) ` -pi; -(5pi)/6; -(2pi)/3; 0; pi/6; pi/3 ` ? Наверное, есть лишнее...

В 15:
Подробности:
(2; + ∞) ?


Подробности:
13 так же. :) посмотрите только, как в я в своём сообщении скобочки поставила в Вашем ответе к (б) части, чтобы дроби "красиво" выглядели. ;)
а в 15 у меня есть ещё промежуток.


Подробности:
Большое спасибо! Насчёт возможности вот так поставить скобочки я догадывалась... спасибо!) А подскажите тогда еще, если не трудно, как в формуле бесконечность поставить?
Что касается номера 15: там еще один промежуток `(2/3;1)` ?


Вернуться наверх 
 Заголовок сообщения: Re: Тренировочный вариант №207
 Сообщение Добавлено: 14 окт 2017, 10:23 
Не в сети

Зарегистрирован: 12 июн 2016, 12:25
Сообщений: 997
Откуда: Москва
По 14 задаче :
Условие не корректно. Ответ `432` получен при предположении, что `DB=DC`, хотя из условия это не следует:
Существует бесконечное множество прямых, проходящих через точку `A` и образующих угол `60^@` с плоскостью основания, любая из этих прямых пересечет грань, перпендикулярную основанию в некоторой точке, которая может быть вершиной пирамиды

_________________
Нужно бежать со всех ног, чтобы только оставаться на месте, а чтобы куда-то попасть, надо бежать как минимум вдвое быстрее!


Вернуться наверх 
 Заголовок сообщения: Re: Тренировочный вариант №207
 Сообщение Добавлено: 14 окт 2017, 10:51 
Не в сети

Зарегистрирован: 18 фев 2014, 05:07
Сообщений: 3083
Откуда: Томск
antonov_m_n писал(а):
По 14 задаче :
Условие не корректно. Ответ `432` получен при предположении, что `DB=DC`, хотя из условия это не следует:
Существует бесконечное множество прямых, проходящих через точку `A` и образующих угол `60^@` с плоскостью основания, любая из этих прямых пересечет грань, перпендикулярную основанию в некоторой точке, которая может быть вершиной пирамиды


Подробности:

_________________
Любовь правит миром (uStas и др.)


Вернуться наверх 
 Заголовок сообщения: Re: Тренировочный вариант №207
 Сообщение Добавлено: 14 окт 2017, 11:05 
Не в сети

Зарегистрирован: 18 фев 2014, 05:07
Сообщений: 3083
Откуда: Томск
№19
Подробности:
да
`40`
`n=2;3`

_________________
Любовь правит миром (uStas и др.)


Вернуться наверх 
 Заголовок сообщения: Re: Тренировочный вариант №207
 Сообщение Добавлено: 14 окт 2017, 11:13 
Не в сети
Аватар пользователя

Зарегистрирован: 02 сен 2016, 21:55
Сообщений: 296
Откуда: Санкт-Петербург
olka-109 писал(а):
№19
Подробности:
да
`40`
`n=2;3`

У меня по-другому.

_________________
Математика – это язык, которым с людьми разговаривают боги.
my you tube


Вернуться наверх 
 Заголовок сообщения: Re: Тренировочный вариант №207
 Сообщение Добавлено: 14 окт 2017, 11:16 
Не в сети
Аватар пользователя

Зарегистрирован: 02 сен 2016, 21:55
Сообщений: 296
Откуда: Санкт-Петербург
Подробности:
Там же написано, что `n>3`.

_________________
Математика – это язык, которым с людьми разговаривают боги.
my you tube


Вернуться наверх 
 Заголовок сообщения: Re: Тренировочный вариант №207
 Сообщение Добавлено: 14 окт 2017, 11:45 
Не в сети

Зарегистрирован: 13 фев 2015, 20:21
Сообщений: 1780
antonov_m_n писал(а):
По 14 задаче :
Условие не корректно. Ответ `432` получен при предположении, что `DB=DC`, хотя из условия это не следует:
Существует бесконечное множество прямых, проходящих через точку `A` и образующих угол `60^@` с плоскостью основания, любая из этих прямых пересечет грань, перпендикулярную основанию в некоторой точке, которая может быть вершиной пирамиды

Похоже эта "недописка" условия (`BD=DC`) принимает устойчивый характер: в варианте 204 было тоже самое. И первым указал на это опять же Михаил Николаевич. Дежавю?!


Вернуться наверх 
 Заголовок сообщения: Re: Тренировочный вариант №207
 Сообщение Добавлено: 14 окт 2017, 11:52 
Не в сети

Зарегистрирован: 18 фев 2014, 05:07
Сообщений: 3083
Откуда: Томск
Thinker писал(а):
Подробности:
Там же написано, что `n>3`.

И правда... :(
Подробности:
Тогда в в) только `6` подходит

_________________
Любовь правит миром (uStas и др.)


Вернуться наверх 
 Заголовок сообщения: Re: Тренировочный вариант №207
 Сообщение Добавлено: 14 окт 2017, 11:55 
Не в сети
Аватар пользователя

Зарегистрирован: 02 сен 2016, 21:55
Сообщений: 296
Откуда: Санкт-Петербург
Теперь похоже. Но в б) у меня тоже по-другому.

_________________
Математика – это язык, которым с людьми разговаривают боги.
my you tube


Вернуться наверх 
 Заголовок сообщения: Re: Тренировочный вариант №207
 Сообщение Добавлено: 14 окт 2017, 11:57 
Не в сети

Зарегистрирован: 16 сен 2017, 13:15
Сообщений: 21
Crane писал(а):
В 13:
Подробности:
а) ` pik; pi/6 + pik; pi/3 + pik`
б) ` -pi; -(5pi)/6; -(2pi)/3; 0; pi/6; pi/3 ` ? Наверное, есть лишнее...

В 15:
Подробности:
(2; + ∞) ?


Добрый день, а мне вот кажется, что в 13 задании x=-2π/3 - это лишний корень. Скажите, пожалуйста, какая совокупность уравнений у вас получилась?

У меня вот sin(x) =0 и sin(2x) =√3/2
А далее я и через неравенство и подбором решил, и -2π/3 не было

Вполне может быть это я что то напортачил, но я ведь уже проверил несколько раз.
P. S. 15 - абсолютно согласен


Вернуться наверх 
Показать сообщения за:  Сортировать по:  
 
 Страница 3 из 16 [ Сообщений: 155 ] На страницу Пред.  1, 2, 3, 4, 5, 6 ... 16  След.





Кто сейчас на форуме

Сейчас этот форум просматривают: Google Adsense [Bot] и гости: 28

 
 

 
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти: